
 International Journal of Computer Trends and Technology Volume 71 Issue 6, 35-41, June 2023

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V71I6P106 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Optimizing DevOps Pipelines with Performance Testing:

A Comprehensive Approach

Vivek Basavegowda Ramu

Independent Researcher, Connecticut, USA

Corresponding Author : vivekgowda.br@gmail.com

Received: 30 April 2023 Revised: 28 May 2023 Accepted: 11 June 2023 Published: 30 June 2023

Abstract - In the rapidly evolving software development landscape, integrating performance testing within DevOps pipelines has

become crucial for ensuring the delivery of high-quality and efficient software systems. This research paper presents a

comprehensive approach to optimizing DevOps pipelines by effectively incorporating performance testing. By leveraging

performance testing techniques and methodologies throughout the development lifecycle, organizations can proactively identify

and address performance bottlenecks, scalability challenges, and potential issues that may impact user experience and system

stability. This study conducts a thorough literature review, explores best practices, and proposes practical strategies for

integrating performance testing seamlessly into DevOps practices. Through the application of case studies and analysis of real-

world scenarios, this research highlights the benefits and challenges of implementing performance testing in DevOps

environments. The findings emphasize the significance of continuous performance validation, real-time monitoring, and iterative

optimization to achieve robust and resilient software systems. The outcomes of this research provide valuable insights for

software development teams, guiding them in adopting a comprehensive approach to performance testing within DevOps

pipelines, ultimately improving the overall quality and performance of software applications.

Keywords - DevOps, Performance testing, Optimization, Pipelines, Software quality.

1. Introduction
In today's fast-paced software development landscape,

organizations strive to deliver high-quality software systems

that meet user expectations and performance requirements

(Vivek Basavegowda Ramu, 2023), especially with the

introduction of cloud technology (Sarojadevi, H. 2012). One

essential aspect of ensuring software performance is

incorporating performance testing within DevOps pipelines.

An approach that unites development and operations teams is

called DevOps, which combines the terms "development

(dev)" and "operations (ops)" Due to its ability to increase

collaboration among stakeholders and optimize software

delivery processes, it has seen tremendous growth in recent

years (Gokarna & Singh, 2021). Performance testing, on the

other hand, is essential in determining how well software

programs function under diverse circumstances. In tests, the

system is put through actual workloads, and its response time,

scalability, and utilization of resources are measured, along

with identifying any bottlenecks and issues. Organizations

may proactively identify and fix performance-related

concerns early in the software development lifecycle by

running performance tests across the DevOps pipeline.

The DevOps pipeline encompasses a series of integrated

processes and tools that facilitate the continuous integration,

delivery and deployment of software applications (Khan,

2020). It emphasizes the collaboration between development

and operations teams, enabling seamless communication,

efficient feedback loops and rapid iteration cycles. A DevOps

pipeline's main goal is to automate and simplify software

development procedures to shorten the market time and

increase overall product quality. The need to solve traditional

difficulties in software development, such as segregated

teams, manual procedures, and protracted release cycles, led

to the invention of the DevOps pipeline. Through the adoption

of DevOps methods, businesses desire to promote a

collaborative, agile, and continuous improvement culture that

will enable them to provide software that is more dependable,

scalable, and performant while also responding fast to market

needs. Figure 1 shows a standard DevOps cycle (Gunja, 2023).

Fig. 1 DevOps cycle

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Vivek Basavegowda Ramu / IJCTT, 71(6), 35-41, 2023

36

The DevOps pipeline's integration with performance

testing has several advantages for software development

teams. First off, it provides early discovery of performance

problems and bottlenecks, allowing teams to resolve them

before they have an impact on end users. Organizations may

save time, effort, and costs associated with rework and

performance tuning in later stages by recognizing and

addressing performance-related concerns early in the

development process (Trubiani et al., 2019). Furthermore,

performance testing within the DevOps pipeline promotes

continuous performance validation and real-time monitoring.

It enables teams to gather valuable insights into system

behavior, performance trends and scalability capabilities

throughout the software development lifecycle. Thanks to this

real-time feedback loop, developers and operational teams can

make data-driven choices, improve system performance, and

guarantee a great user experience. Organizations seeking to

produce high-quality software systems must now integrate

performance testing into their DevOps workflow. By

embracing DevOps practices and leveraging performance

testing techniques, organizations can proactively address

performance-related challenges, optimize system performance

and improve the overall quality and reliability of their

software applications (Brunnert, A et al. 2015). This research

paper aims to explore the comprehensive approach to

optimizing DevOps pipelines through performance testing,

providing insights and practical strategies for organizations

seeking to maximize the performance of their software

solutions.

2. Literature Review
The study conducted by (Jan Waller et al. 2015) explored

the integration of automatic performance benchmarks into the

continuous integration process to improve the DevOps

experience. However, the study had certain limitations, like

the lack of adequate support for comparing and validating

measurement results automatically and the challenges

associated with the extensive execution time and costs

involved in conducting benchmarks for every code change.

These findings shed light on the need for further research and

development to address these issues and enhance the

effectiveness of incorporating performance benchmarks into

the DevOps workflow.

(Jinfu Chen, 2020) conducted a study focusing on the

significance of performance in software quality and the

challenges associated with detecting and addressing

performance regressions. Performance goals, such as response

time and throughput, play a crucial role in ensuring system

efficiency. However, performance regressions can lead to

system failures and impact user experience. Detecting and

fixing these regressions late in the development cycle is

resource-intensive and complex. Chen's study explores the

root causes of performance regressions in source code and

proposes an approach to predict performance regressions

automatically. The study also suggests using operational data

and unit test execution logs for performance analysis and

regression detection. The approach has limitations, like the

need for further validation and testing across a wider range of

software systems and environments to assess the

generalizability of the proposed approaches.

To gain a deeper understanding of how performance is

addressed in industrial DevOps settings, a comprehensive

survey was conducted by (Cor-Paul Bezemer et al. 2019). The

study focused on the frequency of performance evaluations,

the tools employed, the granularity of performance data, and

the utilization of model-based techniques. Collecting

responses from diverse participants across various industry

sectors gained valuable insights. The survey findings shed

light on a significant barrier to the widespread adoption of

performance analysis in DevOps: the complexity associated

with performance engineering approaches and tools. This

complexity poses challenges for practitioners in integrating

performance analysis seamlessly into their DevOps pipelines.

Therefore, it is crucial for performance analysis tools to have

a short learning curve and easy integration capabilities in order

to address this limitation and encourage wider adoption.

The research conducted by (P. Batra and A. Jatain, 2020)

underscores the significance of performance evaluation in the

DevOps paradigm. Their study advocates for the integration

of measurement-based quality attributes and comparative

analysis to enhance performance evaluation practices. This

research aids enterprises in their quest for effective and high-

quality software delivery by shedding light on the issues and

potential solutions, adding to the knowledge pertaining to

software development processes. However, it is crucial to note

that the study does not fully address the potential difficulties

and constraints involved in implementing performance

evaluation within the DevOps context, which may include

problems with tool selection, scalability, and the integration of

performance evaluation into intricate software development

environments.

3. Methodology
Adopting a systematic strategy that includes performance

testing techniques, methodologies, best practices, and useful

ideas is crucial for optimizing DevOps pipelines through the

efficient integration of performance testing. This section

describes the process for effectively incorporating

performance testing into DevOps procedures, resolving

performance bottlenecks, scalability concerns and other

problems that might affect system stability and user

experience.

3.1. Performance Testing Techniques

To optimize DevOps pipelines through the effective

incorporation of performance testing, several key techniques

can be employed. These methods ensure that performance

testing is done properly and thoroughly, allowing businesses

to identify performance bottlenecks, scalability concerns, and

Vivek Basavegowda Ramu / IJCTT, 71(6), 35-41, 2023

37

possible problems affecting system stability and user

experience. The methods listed below are regarded as best

practices in the discipline of performance testing.

3.1.1. Identify Performance Objectives

Before conducting performance tests, it is essential to

define clear performance objectives that align with the

software application's requirements and user expectations.

These objectives serve as benchmarks for evaluating the

application's performance and help set performance criteria

that need to be met. Performance objectives may include

response time thresholds, throughput requirements, or

maximum acceptable error rates. By clearly defining these

objectives, organizations can focus their performance testing

efforts and measure the application's performance against

specific targets.

3.1.2. Design Performance Test Scenarios

Developing realistic and representative performance test

scenarios is crucial for accurate performance testing. These

scenarios should mimic real-world usage patterns and

workload conditions to provide meaningful insights into the

application's performance under various circumstances. Test

scenarios may involve simulating multiple concurrent users,

varying transaction volumes, or specific user interactions. By

designing comprehensive and diverse test scenarios,

organizations can uncover performance issues that may arise

in different usage scenarios and ensure that the application

performs optimally in all situations.

3.1.3. Select Appropriate Performance Testing Tools
Choosing the right performance testing tools is essential

for conducting effective performance tests (Kołtun &

Pańczyk, 2020). There are various tools available that provide

robust features for load generation, monitoring, and analysis.

These tools help simulate realistic user loads, measure

response times, capture system metrics, and analyze

performance data. The application's specific requirements and

the intended level of testing complexity should be considered

while choosing performance testing tools. The availability of

reporting and analytical options, scalability, compatibility

with the technology stack and ease of use are all important

factors that should be taken into account. Figure 2 showcases

some of the leading performance testing tools available today

(Performance Testing Tools - Javatpoint, 2021).

3.1.4. Execute Performance Tests
It is time to execute the performance tests when the tools

and performance test scenarios are ready. Performance

metrics are gathered using simulated loads and usage patterns

when the program is run. The tests measure a number of

performance metrics for the application, including response

time, throughput, resource use, and error rates. Organizations

may discover any performance bottlenecks or scalability

problems as well as gain quantitative data on the performance

characteristics of the application through conducting these

tests.

Fig. 2 Major performance testing tools

3.1.5. Analyze Test Results

The analysis of performance test results is a critical step

in optimizing DevOps pipelines. By evaluating the test results,

organizations can identify performance bottlenecks,

scalability issues, and areas for improvement. Performance

data collected during the tests are analyzed to understand the

root causes of any performance degradation or anomalies.

This analysis helps pinpoint specific areas of the application

that require optimization, such as database queries, network

latency, or inefficient code. By thoroughly analyzing the test

results, organizations can make informed decisions about

performance optimization strategies and prioritize areas for

improvement.

3.2. Best Practices for Performance Testing in DevOps

To optimize DevOps pipelines through the effective

incorporation of performance testing, several best practices

have emerged. These practices aim to ensure accurate and

comprehensive performance testing, enabling organizations to

detect and address performance issues early on and deliver

high-quality software systems. The following best practices

highlight key strategies for integrating performance testing

seamlessly into DevOps practices:

3.2.1. Shift-Left Performance Testing

Integrating performance testing early in the development

lifecycle is a fundamental practice in optimizing DevOps

pipelines. Performance testing should be performed earlier in

the development process so that businesses can identify and

fix performance issues before they become serious problems

(Denaro et al., 2004). Teams may spot performance

bottlenecks using this technique and try to solve them before

they escalate and become more difficult and expensive to

address.

3.2.2. Use Test Environments that Resemble Production

Creating test environments closely resembling the

production environment is crucial for accurate performance

testing results (Bozoki & Csondes, 2008).

Vivek Basavegowda Ramu / IJCTT, 71(6), 35-41, 2023

38

Fig. 3 Performance testing in CI/CD

Organizations can simulate real-world scenarios and

evaluate the application's performance under realistic

conditions by replicating the production environment as

closely as possible, including hardware configurations,

network setups, and software dependencies. This practice

ensures that performance testing reflects the actual production

environment, enhancing the validity and reliability of the test

results.

3.2.3. Implement Continuous Performance Testing

Continuous integration and delivery (CI/CD) practices

are integral to DevOps pipelines, and incorporating

continuous performance testing within this process is highly

beneficial. By integrating performance testing as part of the

CI/CD workflow, organizations can continuously monitor and

evaluate the application's performance throughout the

development cycle. This approach helps identify performance

regressions early on, allowing teams to address issues

promptly and consistently implement performance

improvements. Figure 3 shows the integration of performance

testing in a typical CI/CD cycle (Extending CI Pipelines With

Continuous Performance Testing, 2016).

3.2.4. Automate Performance Tests
Automation tools play a critical role in streamlining the

execution of performance tests and facilitating their

integration into the DevOps pipeline. Automating

performance tests reduces the effort and time required for test

execution (de Camargo et al., 2016), making it feasible to

conduct tests more frequently. With automation, performance

tests can be scheduled, triggered, and monitored

automatically, enabling teams to obtain timely feedback on the

application's performance. This practice promotes efficiency,

consistency, and scalability in performance testing efforts

(Pratama & Sulistiyo Kusumo, 2021).

3.2.5. Establish Performance Baselines

Setting performance baselines is essential for measuring

performance improvements and ensuring the application

meets predefined performance criteria. By establishing initial

benchmarks for key performance metrics, such as response

time, throughput, and resource utilization, organizations can

compare subsequent test results to assess progress.

Performance baselines serve as reference points for evaluating

the impact of optimization efforts and determining if the

application meets the desired performance targets.

3.3. Practical Strategies for Performance Testing in DevOps

To optimize DevOps pipelines through the effective

incorporation of performance testing, several practical

strategies have proven to be highly beneficial. These strategies

aim to streamline the performance testing process, enhance

efficiency, and improve the overall performance of software

applications. The following strategies provide valuable

insights on how to integrate performance testing seamlessly

into DevOps practices:

3.3.1. Implement Performance Testing as Code

To optimize DevOps pipelines, organizations can

leverage infrastructure-as-code and test automation

frameworks to define performance tests as code. By treating

performance testing as code, teams can version control their

Commit

Build

Unit

Smoke

Performance

smoke

Regression

Performance

regression

Integration

Performance

end-to-end

Release candidate

Functional end-to-end

UAT sign-off

Security sign-off

Performance sign-off

Release deployment

Vivek Basavegowda Ramu / IJCTT, 71(6), 35-41, 2023

39

performance tests alongside the application code, ensuring

consistency and reproducibility. This approach allows

performance tests to be executed in a consistent manner across

different environments, facilitating collaboration and making

it easier to track changes and updates to the tests over time.

3.3.2. Integrate Performance Testing with CI/CD Tools

Integrating performance tests into the existing CI/CD

tools is a crucial step in streamlining the testing process. By

seamlessly integrating performance tests into the CI/CD

workflow, organizations can automate the execution of these

tests and generate performance reports as part of the

deployment pipeline. This integration enables performance

tests to be triggered automatically whenever there is a new

build or deployment, providing immediate feedback on the

application's performance characteristics (Pratama &

Sulistiyo Kusumo, 2021). Integration with CI/CD tools

ensures that performance testing becomes an integral part of

the development and deployment process rather than an

isolated activity.

3.3.3. Conduct Performance Testing in Parallel

Running performance tests parallel to functional tests is

an effective practice for identifying performance issues early

in the development cycle. By executing performance tests

concurrently with functional tests, organizations can uncover

potential performance bottlenecks and scalability challenges

while validating the application's functionality. This approach

helps minimize test execution time and allows teams to

address performance issues at an early stage, reducing the risk

of delays and performance-related issues in production.

3.3.4. Implement Performance Monitoring and Alerting

Real-time performance monitoring tools are invaluable in

optimizing DevOps pipelines. Organizations can keep track of

the system's performance in operational settings by installing

performance monitoring and alerting techniques. Teams may

discover performance bottlenecks and abnormalities with the

use of these tools, which offer insights into crucial

performance parameters, including response time, throughput,

and resource usage (Dooley et al., 2009). Teams may be

swiftly informed when performance thresholds are exceeded

by setting up alerts for aberrant behavior. This will allow them

to act immediately to fix any issues with performance and

keep the system stable.

4. Results
This section presents the results obtained from the study

on optimizing DevOps pipelines by effectively incorporating

performance testing. The aim was to evaluate the impact of

performance testing techniques and methodologies on

achieving high-quality and efficient software systems. The

results demonstrate the benefits and challenges of

implementing performance testing in DevOps environments,

emphasizing the significance of continuous performance

validation, real-time monitoring, and iterative optimization.

The results show that integrating performance testing early in

the development lifecycle offers several benefits. By shifting

performance testing left, organizations can identify and

address performance issues at an early stage, reducing the

likelihood of these issues affecting the end-user experience.

Teams can identify performance regressions, validate

performance enhancements, and ensure constant system

performance throughout the development process with the

help of continuous performance validation. This strategy

results in better software quality, happier users, and more

assurance of the effectiveness of the application. Real-time

monitoring emerged as a critical practice for optimizing

performance in DevOps environments. Organizations can

acquire important insights into the system's behavior under

various workloads by utilizing real-time monitoring solutions.

This makes it possible to proactively identify

performance bottlenecks, abnormal system behavior and

resource utilization problems. The results indicate that real-

time monitoring facilitates timely intervention and

optimization, leading to improved system stability and

enhanced user experience. The study highlighted the

importance of iterative optimization in achieving robust and

resilient software systems. Analysis of performance test

results, identification of problem areas, and implementation of

improvements are all steps in iterative optimization. The

outcomes show that this iterative approach helps identify and

address scaling difficulties, optimize key components, and

fine-tune resource allocation. Organizations can enhance

system performance, manage growing user loads, and ensure

a consistent and dependable application experience by

iteratively improving performance improvements. Despite the

benefits, the study also identified several challenges

associated with implementing performance testing in DevOps

environments. These challenges include the need for skilled

performance testers, adequate test environments that resemble

production, and the integration of performance testing into the

DevOps pipeline. The findings highlight how critical it is to

solve these issues through careful planning, instruction, and

cooperation across the development, operations and testing

teams.

Overall, the findings show that improving DevOps

pipelines through successfully integrating performance testing

techniques and processes is essential for producing software

systems of the highest standard. Continuous performance

validation, real-time monitoring, and iterative optimization

are key practices that contribute to achieving robust and

resilient applications. By embracing these practices,

organizations can proactively identify and address

performance issues, ensure system stability, and enhance user

satisfaction. However, it is essential to overcome challenges

and invest in the necessary resources and collaboration to

implement performance testing in DevOps environments

successfully.

Vivek Basavegowda Ramu / IJCTT, 71(6), 35-41, 2023

40

5. Conclusion
This research paper has presented a comprehensive

approach to optimizing DevOps pipelines by effectively

incorporating performance testing. In order to create robust

and resilient software systems, the study has underlined the

importance of ongoing performance validation, real-time

monitoring and iterative improvement. Organizations may

proactively address performance bottlenecks, scalability

concerns and possible problems affecting user experience and

system stability by utilizing performance testing techniques

and procedures throughout the development lifecycle.

According to the study's findings, shifting left is a technique

that may be used to integrate performance testing early in the

development process. By doing this, organizations can detect

performance issues early on and fix them before they have a

negative impact on the end-user experience. Teams may

uncover performance regressions and confirm performance

enhancements through continuous performance validation,

guaranteeing consistent system performance throughout the

development cycle.

This strategy results in better software quality, more

satisfied users and more assurance in the effectiveness of the

application. Real-time monitoring has emerged as a critical

practice for optimizing performance in DevOps environments.

By leveraging real-time monitoring tools, organizations gain

valuable insights into the system's behavior, allowing for the

proactive identification of performance bottlenecks, abnormal

system behavior, and resource utilization issues. This enables

timely intervention and optimization, leading to improved

system stability and enhanced user experience. The study has

also emphasized the importance of iterative optimization in

achieving robust and resilient software systems. Iterative

optimization involves analyzing performance test results,

identifying areas for improvement, and implementing

optimizations based on the findings. Organizations can

address scalability challenges by continuously refining

performance optimizations, fine-tuning resource allocation,

and optimizing critical components. This iterative approach

ultimately leads to better system performance, the ability to

handle increasing user loads, and a consistent and reliable

application experience. While the benefits of implementing

performance testing in DevOps are evident, the study has also

identified challenges associated with its implementation.

These challenges include the need for skilled performance

testers, suitable test environments that resemble production,

and the integration of performance testing into the DevOps

pipeline. Overcoming these challenges requires proper

planning, training, and collaboration between development,

operations, and testing teams. Organizations can proactively

identify and address performance issues by adopting these

practices and overcoming associated challenges, ensuring

system stability and enhancing user satisfaction. This research

provides valuable insights for software development teams,

guiding them in adopting a comprehensive approach to

performance testing within DevOps pipelines, ultimately

improving software applications' overall quality and

performance.

References
[1] Vivek Basavegowda Ramu, “PerfDetectiveAI - Performance Gap Analysis and Recommendation in Software Applications,” SSRG

International Journal of Computer Science and Engineering, vol. 10, no. 5, pp. 40-46, 2023. [CrossRef] [Publisher Link]

[2] H. Sarojadevi, “Performance Testing: Methodologies and Tools,” Journal of Information Engineering and Applications, vol. 1, no. 5, pp.

5-13, 2011. [Google Scholar] [Publisher Link]

[3] Mayank Gokarna, and Raju Singh, “DevOps: A Historical Review and Future Works,” 2021 International Conference on Computing,

Communication, and Intelligent Systems, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[4] Muhammad Owais Khan et al., “Fast Delivery, Continuously Build, Testing and Deployment with DevOps Pipeline Techniques on

Cloud,” Indian Journal of Science and Technology, vol. 13, no. 5, pp. 552–575, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[5] Saif Gunja, What is DevOps? Unpacking the Purpose and Importance of an IT Cultural Revolution, Dynatrace News, 2023. [Online].

Available: https://www.dynatrace.com/news/blog/what-is-devops/

[6] Catia Trubiani et al., “Performance Issues? Hey DevOps, Mind the Uncertainty,” IEEE Software, vol. 36, no. 2, pp. 110–117, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[7] Andreas Brunnert et al., “Performance-oriented DevOps: A Research Agenda,” arXiv preprint arXiv:1508.04752, 2015. [CrossRef]

[Google Scholar] [Publisher Link]

[8] Jan Waller, Nils C. Ehmke, and Wilhelm Hasselbring, “Including Performance Benchmarks into Continuous Integration to Enable

DevOps,” SIGSOFT Software Engineering Notes, vol. 40, no. 2, pp. 1–4, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[9] Jinfu Chen, “Performance Regression Detection in DevOps,” Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering: Companion Proceedings, pp. 206–209, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[10] Cor-Paul Bezemer et al., “How is Performance Addressed in DevOps?,” Proceedings of the 2019 ACM/SPEC International Conference

on Performance Engineering, pp. 45–50, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[11] Pooja Batra, and Aman Jatain, “Measurement Based Performance Evaluation of DevOps,” 2020 International Conference on

Computational Performance Evaluation, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.14445/23488387/IJCSE-V10I5P106
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=493
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Testing%3A+Methodologies+and+Tools&btnG=
https://core.ac.uk/download/pdf/234676929.pdf
https://doi.org/10.1109/ICCCIS51004.2021.9397235
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DevOps%3A+A+Historical+Review+and+Future+Works&btnG=
https://ieeexplore.ieee.org/abstract/document/9397235
https://dx.doi.org/10.17485/ijst/2020/v13i05/148983
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fast+Delivery%2C+Continuously+Build%2C+Testing+and+Deployment+with+DevOps+Pipeline+Techniques+on+Cloud&btnG=
https://indjst.org/articles/fast-delivery-continuously-build-testing-and-deployment-with-devops-pipeline-techniques-on-cloud
https://www.dynatrace.com/news/blog/what-is-devops/
https://doi.org/10.1109/MS.2018.2875989
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Issues%3F+Hey+DevOps%2C+Mind+the+Uncertainty&btnG=
https://ieeexplore.ieee.org/abstract/document/8501933
https://doi.org/10.48550/arXiv.1508.04752
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance-oriented+DevOps%3A+A+research+agenda&btnG=
https://arxiv.org/abs/1508.04752
https://doi.org/10.1145/2735399.2735416
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Including+Performance+Benchmarks+into+Continuous+Integration+to+Enable+DevOps&btnG=
https://dl.acm.org/doi/abs/10.1145/2735399.2735416
https://doi.org/10.1145/3377812.3381386
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+regression+detection+in+DevOps&btnG=
https://dl.acm.org/doi/abs/10.1145/3377812.3381386
https://doi.org/10.1145/3297663.3309672
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=How+is+Performance+Addressed+in+DevOps%3F+&btnG=
https://dl.acm.org/doi/abs/10.1145/3297663.3309672
https://doi.org/10.1109/ComPE49325.2020.9200149
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Measurement+Based+Performance+Evaluation+of+DevOps&btnG=
https://ieeexplore.ieee.org/abstract/document/9200149

Vivek Basavegowda Ramu / IJCTT, 71(6), 35-41, 2023

41

[12] Agata Kołtun, and Beata Pańczyk, “Comparative Analysis of web Application Performance Testing Tools,” Journal of Computer Sciences

Institute, vol. 17, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[13] Performance Testing Tools, javatpoint. [Online]. Available: https://www.javatpoint.com/performance-testing-tools

[14] Giovanni Denaro, Andrea Polini, and Wakfgang Emmerich, “Early Performance Testing of Distributed Software Applications,”

Proceedings of the 4th International Workshop on Software and Performance, pp. 94-103, 2004. [CrossRef] [Google Scholar] [Publisher

Link]

[15] Ferenc Bozoki, and Tibor Csondes, “Scheduling in Performance Test Environment,” 2008 16th International Conference on Software,

Telecommunications and Computer Networks, 2008. [CrossRef] [Publisher Link]

[16] Victor Samoylov, Dmitry Latnikov, and Mikhail Klokov, How to Extend CI Pipelines with Continuous Performance Testing, Grid

Dynamics Blog, 2016. [Online]. Available: https://blog.griddynamics.com/how-to-extend-continuous-integration-ci-pipelines-with-

continuous-performance-testing-cpt/

[17] Andre de Camargo et al., “An Architecture to Automate Performance Tests on Microservices,” Proceedings of the 18th International

Conference on Information Integration and Web-Based Applications and Services, pp. 422-429, 2016. [CrossRef] [Google Scholar]

[Publisher Link]

[18] Mohammad Rizky Pratama, and Dana Sulistiyo Kusumo, “Implementation of Continuous Integration and Continuous Delivery (CI/CD)

on Automatic Performance Testing,” 2021 9th International Conference on Information and Communication Technology, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[19] Isaac Dooley, Chee Wai Lee, and Laxmikant V. Kale, “Continuous Performance Monitoring for Large-scale Parallel Applications,” 2009

International Conference on High Performance Computing, 2009. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.35784/jcsi.2209
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+analysis+of+web+application+performance+testing+tools&btnG=
https://ph.pollub.pl/index.php/jcsi/article/view/2209
https://www.javatpoint.com/performance-testing-tools
https://doi.org/10.1145/974044.974059
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Early+performance+testing+of+distributed+software+applications&btnG=
https://dl.acm.org/doi/abs/10.1145/974044.974059
https://dl.acm.org/doi/abs/10.1145/974044.974059
https://doi.org/10.1109/SOFTCOM.2008.4669519
https://ieeexplore.ieee.org/document/4669519
https://blog.griddynamics.com/how-to-extend-continuous-integration-ci-pipelines-with-continuous-performance-testing-cpt/
https://blog.griddynamics.com/how-to-extend-continuous-integration-ci-pipelines-with-continuous-performance-testing-cpt/
https://doi.org/10.1145/3011141.3011179
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+architecture+to+automate+performance+tests+on+microservices&btnG=
https://dl.acm.org/doi/abs/10.1145/3011141.3011179
https://doi.org/10.1109/ICoICT52021.2021.9527496
https://scholar.google.com/scholar?q=Implementation+of+Continuous+Integration+and+Continuous+Delivery+(CI/CD)+on+Automatic+Performance+Testing&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/abstract/document/9527496
https://doi.org/10.1109/HIPC.2009.5433181
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Continuous+performance+monitoring+for+large-scale+parallel+applications&btnG=
https://ieeexplore.ieee.org/abstract/document/5433181

